Automatic Segmentation of Brain Tumors on Non-Contrast-Enhanced Magnetic Resonance Images using Fuzzy Clustering

نویسندگان

  • Y-M. Liu
  • C-C. Liao
  • F. Xiao
  • J-M. Wong
چکیده

Manual brain tumor segmentation from magnetic resonance imaging is a difficult and time-consuming task for physicians. For this reason, an automated brain tumor segmentation method is desirable. Currently, segmentation of gadolinium-enhanced tumor is feasible via combining semi-supervised clustering with knowledge-based analysis [1]. However, the accuracy of supervised segmentation techniques depends on the performance of human experts. Moreover, approximately 10% of all brain tumors can not be enhanced in magnetic resonance (MR) images after a contrast agent has been administered, making segmentation extremely difficult [2]. Therefore, we define a non-contrast-enhanced brain tumor segmentation with an unsupervised clustering algorithm, Fuzzy C-Means (FCM) and there is no need for manual data labeling. There are tumor segmentation studies based on non-contrast-enhanced T1-weighed (T1), T2-weighed (T2) and proton density weighed (PD) images [2, 3]. Our study is based on T1 and T2 images only. Even though FCM is quite popular, the neighborhood condition is not considered in FCM. Region merging used in this study just makes up for that weakness. The purpose of this study is to segment brain tumor with non-contrast-enhanced MR imaging via unsupervised FCM clustering combined with region merging and knowledge-based analysis. Material and Methods

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

An Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors

Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...

متن کامل

P14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering

Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...

متن کامل

Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach

Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...

متن کامل

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009